Investigation of sources and production methods of bioactive peptides effective on human health: A systematic review

Authors

Abstract

Background: The value of proteins in human health as the main source of amino acids has been proven. In addition to nutritional value, proteins also have biological functions that are expressed by bioactive peptides. Production methods of bioactive peptides affect their function. This article aims to investigate sources and production methods of bioactive peptides effective on human health.
 
Methods: For gathering information in this review, English articles between 1988 and 2018 containing one of the keywords "bioactive peptides, enzymatic hydrolysis, anti-cancer and anti-hypertensive agents" were searched in PubMed, Scopus, Science Direct and the Islamic World Science Citation Database (ISC). Among 643 papers found, 28 articles related to the subject were selected.
 
Results: The articles show that utilizing the enzymatic hydrolysis method for therapeutic applications causes them to be more stable in comparison with fermentation and solvent extraction methods and is safer than the other two methods. Also, the positive health effects of these compounds include reducing the risk of chronic diseases, increasing immune function, reducing cholesterol, antimicrobial activity, as well as antioxidant, anti-clotting, antihypertensive, and anticancer properties.
 
Conclusion: In recent years, the role of bioactive peptides as therapeutic compounds has been highlighted. Bioactive peptides can play an effective role in human health. Therefore, investment and planning in this area can affect the future health of the country.

Keywords


1. Ryan JT, Ross RP, Bolton D, Fitzgerald GF, Stanton C. Bioactive peptides from muscle sources: meat and fish. Nutrients 2011;3(9):765-91. doi: 10.3390/nu3090765. 2. Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. International Dairy Journal. 2005;16(9):945-60. doi.org/10.1016/j.idairyj.2005.10.012 3. Ngo DH, Vo TS, Ngo DN, Wijesekara I, Kim SK. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int J Biol Macromol 2012;51(4):378-83. doi: 10.1016/j.ijbiomac.2012.06.001 4. Udenigwe CC, Aluko RE. Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci 2012;77(1):R11-24. doi: 10.1111/j.1750-3841.2011.02455.x. 5. Korhonen H. Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods 2009;1(2):177-87. https://doi.org/10.1016/j.jff.2009.01.007 6. FitzGerald RJ, Murray BA. Bioactive peptides and lactic fermentations. International Journal of Dairy Technology 2006;59(2):118-25. doi:10.1111/j.1471-0307.2006.00250.x 7. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 2007;18(2):163-9. doi: 10.1016/j.copbio.2007.01.013 8. Besharati S, Khodabandeh S. Anticoagulant Properties of Protein Hydrolysates from the Muscle of Sea Cucumber. J Mazandaran Univ Med Sci 2017;26(145):371-6. [In Persian] 9. Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 2011;29(3):272-7. doi: 10.1016/j.biotechadv.2011.01.001. 10. Pripp AH, Isaksson T, Stepaniak L, Sørhaug T, Ardö Y. Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends in Food Science & Technology 2005;16(11):484-94. doi.org/10.1016/j.tifs.2005.07.003 11. Expósito IL, Recio I. Antibacterial activity of peptides and folding variants from milk proteins. International Dairy Journal 2006;16(11):1294–305. doi: 10.1016/j.idairyj.2006.06.002 12. Pouranvari S, Ebrahimi F, Javadi G, Maddah B. Production of recombinant human epidermal growth factor and assessment of its activity in cell viability. J Mazandaran Univ Med Sci 2015;25(125):10-20. [In Persian] 13. Arihara K. Strategies for designing novel functional meat products. Meat Sci 2006;74(1):219-29. doi: 10.1016/j.meatsci.2006.04.028. 14. Wang W, Mejia EG. A new frontier in soy bioactive peptides that may prevent age‐related chronic diseases. Comprehensive Reviews in Food Science and Food Safety 2006;4(4):63–78. doi: 10.1111/j.1541-4337.2005.tb00075.x 15. Daliri EB, Lee BH, Oh DH. Current trends and perspectives of bioactive peptides. Crit Rev Food Sci Nutr 2018;58(13):2273-84. doi: 10.1080/10408398.2017.1319795. 16. Brady R, Woonton B, Gee ML, O'Connor AJ. Hierarchical mesoporous silica materials for separation of functional food ingredients - A review. Innovative Food Science & Emerging Technologies 2008;9(2):243–8. doi.org/10.1016/j.ifset.2007.10.002 17. Landon C, Pajon A, Vovelle F, Sodano P. The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. J Pept Res 2000;56(4):231-8. doi: 10.1034/j.1399-3011.2000.00757.x 18. Upadhyay RK. Animal proteins and peptides: Anticancer and antimicrobial potential. Journal of Pharmacy Research 2010;3(12):3100. doi: 10.5772/26077 19. Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B, Lepage P, Van Dorsselaer A, Hoffmann J, Fothergill J. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A 1989;86(1):262-6. doi: 10.1073/pnas.86.1.262. 20. Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 1988;263(32):16709-13. 21. Jorge RJ, Martins AM, Morais IC, Ximenes RM, Rodrigues FA, Soares BM, et al. In vitro studies on Bothrops venoms cytotoxic effect on tumor cells. J Exp Ther Oncol 2011;9(3):249-53. 22. Gibson BW, Tang DZ, Mandrell R, Kelly M, Spindel ER. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem 1991;266(34):23103-11. 23. Gomes A, Giri B, Saha A, Mishra R, Dasgupta SC, Debnath A, et al. Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potentials for possible drug development. Indian J Exp Biol 2007;45(7):579-93. 24. Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, et al. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 2000;19(3):187-94. doi: 10.1007/s100960050457 25. Conlon JM, Sonnevend A, Patel M, Davidson C, Nielsen PF, Pál T, et al. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res 2003;62(5):207-13. doi: 10.1034/j.1399-3011.2003.00090.x 26. Goraya J, Wang Y, Li Z, O'Flaherty M, Knoop FC, Platz JE, et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem 2000;267(3):894-900. doi: 10.1046/j.1432-1327.2000.01074.x 27. Ali MF, Knoop FC, Vaudry H, Conlon JM. Characterization of novel antimicrobial peptides from the skins of frogs of the Rana esculenta complex. Peptides 2003;24(7):955-61. doi: 10.1016/s0196-9781(03)00193-1 28. Sumida M, Ogata M, Kaneda H, Yonekawa H.. Evolutionary relationships among Japanese pond frogs inferred from mitochondrial DNA sequences of cytochrome b and 12S ribosomal RNA genes. Genes Genet Syst 1998;73(2):121-33. doi: 10.1266/ggs.73.121 29. Fagundes PC, Ceotto H, Potter A, Vasconcelos de Paiva Brito MA, Brede D, et al. Hyicin 3682, a bioactive peptide produced by Staphylococcus hyicus 3682 with potential applications for food preservation. Res Microbiol 2011;162(10):1052-9. doi: 10.1016/j.resmic.2011.10.002. 30. Tang W, Yuan H, Zhang H, Wang L, Qian H, Qi X. An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method. Food Control 2015;50:413-22. doi.org/10.1016/j.foodcont.2014.09.030 31. McClean S, Beggs LB, Welch RW. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues. Food Chem 2014;146:443-7. doi: 10.1016/j.foodchem.2013.09.094. 32. Théolier J, Hammami R, Labelle P, Fliss I, Jean J. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods 2013;5(2):706-14. doi.org/10.1016/j.jff.2013.01.014 33. Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol 2016;16:12. doi: 10.1186/s12866-016-0626-6. 34. Duvick JP, Rood T, Rao AG, Marshak DR. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 1992;267(26):18814-20. 35. Lee TG, Maruyama S. Isolation of HIV-1 protease-inhibiting peptides from thermolysin hydrolysate of oyster proteins. Biochem Biophys Res Commun 1998;253(3):604-8. doi: 10.1006/bbrc.1998.9824. 36. Xiao M, Ding L, Yang W, Chai L, Sun Y, Yang X, et al. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon 2017;127:37-43. doi: 10.1016/j.toxicon.2017.01.005. 37. Hou H, Fan Y, Wang S, Si L, Li B. Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor – Artificial neural network and the identification of its active central fragment. Journal of Functional Foods 2016;24:37-47. doi.org/10.1016/j.jff.2016.03.033 38. Huang SL, Jao CL, Ho KP, Hsu KC. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 2012;35(1):114-21. doi: 10.1016/j.peptides.2012.03.006. 39. Li-Chan EC, Hunag SL, Jao CL, Ho KP, Hsu KC. Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 2012;60(4):973-8. doi: 10.1021/jf204720q. 40. Zhang Y, Chen R, Ma H, Chen S. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS. J Agric Food Chem 2015;63(40):8819-28. doi: 10.1021/acs.jafc.5b03062. 41. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 1998;62(1):145-7. doi: 10.1271/bbb.62.145 42. Sasaki M, Yamada H, Kato N. A resistant protein, sericin improves atropine-induced constipation in rats. Food Science and Technology Research 2000;6(4):280–3. doi: 10.3136/fstr.6.280 43. Koyama M, Naramoto K, Nakajima T, Aoyama T, Watanabe M, Nakamura K. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. J Agric Food Chem 2013;61(12):3013-21. doi: 10.1021/jf305157y. 44. García-Tejedor A, Sánchez-Rivera L, Castelló-Ruiz M, Recio I, Salom JB, Manzanares P. Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. J Agric Food Chem 2014;62(7):1609-16. doi: 10.1021/jf4053868. 45. Chen Y, Liu W, Xue J, Yang J, Chen X, Shao Y, et al. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. J Dairy Sci 2014;97(11):6680-92. doi: 10.3168/jds.2014-7962. 46. Vallabha VS, Tiku PK. Antihypertensive Peptides Derived from Soy Protein by Fermentation. International Journal of Peptide Research and Therapeutics 2014;20(2):161-8. doi: 10.1007/s10989-013-9377-5 47. Zheng Y, Li Y, Zhang Y, Ruan X, Zhang R. Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. Journal of Functional Foods 2017;28:48-58. doi: 10.1016/j.jff.2016.11.021 48. Li Y, Zhou J, Huang K, Sun Y, Zeng X. Purification of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide with an antihypertensive effect from loach (Misgurnus anguillicaudatus). J Agric Food Chem 2012;60(5):1320-5. doi: 10.1021/jf204118n. 49. Castellano P, Aristoy MC, Sentandreu MÁ, Vignolo G, Toldrá F. Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus. J Proteomics 2013;89:183-90. doi: 10.1016/j.jprot.2013.06.023. 50. Escudero E, Mora L, Fraser PD, Aristoy MC, Arihara K, Toldrá F. Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. J Proteomics 2013;78:499-507. doi: 10.1016/j.jprot.2012.10.019. 51. Kim DS, Jang YJ, Jeon OH, Kim DS. Saxatilin, a snake venom disintegrin, suppresses TNF-alpha-induced ovarian cancer cell invasion. J Biochem Mol Biol 2007;40(2):290-4. doi: 10.5483/bmbrep.2007.40.2.290 52. Das Gupta S, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni JR, et al. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res 2007;31(6):817-25. doi: 10.1016/j.leukres.2006.06.004 53. Giri B, Gomes A, Debnath A, Saha A, Biswas AK, Dasgupta SC, et al. Antiproliferative, cytotoxic and apoptogenic activity of Indian toad (Bufo melanostictus, Schneider) skin extract on U937 and K562 cells. Toxicon 2006;48(4):388-400. doi: 10.1016/j.toxicon.2006.06.011 54. Hatanaka T, Uraji M, Fujita A, Kawakami K. Anti-oxidation activities of rice-derived peptides and their inhibitory effects on dipeptidylpeptidase-IV. International Journal of Peptide Research and Therapeutics 2015;21(4):479-85. doi: 10.1007/s10989-015-9478-4 55. Yan QJ, Huang LH, Sun Q, Jiang ZQ, Wu X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem 2015;179:290-5. doi: 10.1016/j.foodchem.2015.01.137. 56. Chi CF, Wang B, Hu FY, Wang YM, Zhang B, Deng SG, et al. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International 2015;73:124-9. doi.org/10.1016/j.foodres.2014.08.038 57. Park SY, Kim YS, Ahn C-B, Je JY. Partial purification and identification of three antioxidant peptides with hepatoprotective effects from blue mussel (Mytilus edulis) hydrolysate by peptic hydrolysis. Journal of Functional Foods 2016;20:88-95. doi.org/10.1016/j.jff.2015.10.023 58. McCann KB, Shiell BJ, Michalski WP, Lee A, Wan J, Roginski H, et al. Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. International Dairy Journal 2006;16(4):316-23. doi: 10.1016/j.idairyj.2005.05.00559. 59. Clare DA, Swaisgood HE. Bioactive milk peptides: a prospectus. J Dairy Sci 2000;83(6):1187-95. doi: 10.3168/jds.S0022-0302(00)74983-6 60. Silva SV, Malcata FX. Caseins as source of bioactive peptides. International Dairy Journal 2005;15(1):1-15. doi.org/10.1016/j.idairyj.2004.04.009 61. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides 2010;31(10):1949-56. doi: 10.1016/j.peptides.2010.06.020. 62. Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods 2010;2(1):1-9. doi: 10.1016/j.jff.2010.01.003 63. Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A 2002;99(20):12628-32. doi: 10.1073/pnas.192301899 64. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International 2005;38(2):175–82. doi.org/10.1016/j.foodres.2004.10.002 65. Jalili H, Razavi SH, Safari M, Malcata FX. Enhancement of growth rate and β-galactosidase activity, and variation in organic acid profile of Bifidobacterium animalis subsp. lactis Bb 12. Enzyme and Microbial Technology 2009;45(6-7):469-76. doi: 10.1016/j.enzmictec.2009.08.016 66. Jalili H, Razavi H, Safari M. Effect of Whey Permeate and Yeast Extract on Metabolic Activity of Bifidobacterium Animalis Subsp. Lactis Bb 12.  Iranian Journal of Biotechnolog 2010;8(1):38-45. doi: 10.1021/jf204118n 67. Jalili H, Razavi SH, Safari M, Amrane A. Kinetic analysis and effect of culture medium and coating materials during free and immobilized cell cultures of Bifidobacterium animalis subsp. Lactis Bb 12. Electronic Journal of Biotechnology 2010;13(3):2-3. doi: 10.2225/vol13-issue3-fulltext-4 68. Najafian L, Babji AS. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides 2012;33:178-85. doi: 10.1016/j.peptides.2011.11.013 69. Richard NL, Pivarnik LF, Ellis PC, Lee CM. Impact of quality parameters on the recovery of putrescine and cadaverine in fish using methanol-hydrochloric acid solvent extraction. J AOAC Int 2011;94(4):1177-88. 70. Gobbetti M, Minervini F, Rizzello CG. Angiotensin-I-converting enzyme-inhibitory and microbial-bioactive peptides. International Journal of Dairy Technology 2004; 57(2‐3):173 – 88. doi: 10.1111/j.1471-0307.2004.00139.x) 71. Vermeirssen V, Van Camp J, Verstraete W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br J Nutr 2004;92(3):357-66. doi: 10.1079/bjn20041189 72. Chabeaud A, Vandanjon L, Bourseau P, Jaouen P, Chaplain-Derouiniot M, Guerard F. Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate: Application to the refining of bioactive peptidic fractions. Separation and Purification Technology 2009;66(3):463–71. doi: 10.1016/j.seppur.2009.02.012 73. Pedroche J, Yust MM, Lqari H, Megias CJ, Girón-CalleM J, Alaiz J, Alaiz M, et al. Obtaining of Brassica carinata protein hydrolysates enriched in bioactive peptides using immobilized digestive proteases. Food Research International 2007;40(7):931–8. doi.org/10.1016/j.foodres.2007.04.001 74. Sheu F, Chien PJ, Chien AL, Chen YF, Chin KL. Isolation and characterization of an immunomodulatory protein (APP) from the Jew's Ear mushroom Auricularia polytricha. Food Chemistry 2004;87(4):593–600. doi.org/10.1016/j.foodchem.2004.01.015 75. Harnedy PA, FitzGerald RJ. Bioactive proteins, peptides, and amino acids from macroalgae(1). J Phycol 2011;47(2):218-32. doi: 10.1111/j.1529-8817.2011.00969.x. 76. Bargeman G, Koops GH, Houwing J, Breebaart I, Van der Horst HC, Wessling M. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate. Desalination 2002;149(1-3):369-74. doi.org/10.1016/S0011-9164(02)00824-X 77. Gotoh T, Iguchi H, Kikuchi KI. Separation of glutathione and its related amino acids by nanofiltration. Biochemical Engineering Journal 2004;19(2):165-70. doi: 10.1016/j.bej.2003.12.011 78. Bazinet L, Firdaous L. Membrane processes and devices for separation of bioactive peptides. Recent Pat Biotechnol 2009;3(1):61-72. doi: 10.2174/187220809787172623 79. Firdaous L, Dhulster P, Amiot J, Gaudreau A, Lecouturier D, Kapel R, et al. Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. Journal of Membrane Science 2009;329(1-2):60–7. doi.org/10.1016/j.memsci.2008.12.012 80. Martin-Orue C, Bouhallab S, Garem A. Nanofiltration of amino acid and peptide solutions: mechanisms of separation. Journal of Membrane Science 1998;142(2):225-33. doi.org/10.1016/S0376-7388(97)00325-6 81. Timmer JM, Speelmans MP, Horst HC. Separation of amino acids by nanofiltration and ultrafiltration membranes. Separation and Purification Technology 1998;14(1-3):133–44. doi.org/10.1016/S1383-5866(98)00068-9 82. Poulin JF, Amiot J, Bazinet L. Improved peptide fractionation by electrodialysis with ultrafiltration membrane: Influence of ultrafiltration membrane stacking and electrical field strength. Journal of Membrane Science 2007;299(1-2):83–90. doi:10.1016/j.memsci.2007.04.024 83. Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 2004;803(1):41-53. doi: 10.1016/j.jchromb.2003.11.005 84. Sadeghi S, Jaberi Ansari F, Jalili H. Obstacles and Challenges in the Use of Probiotics. J Babol Univ Med Sci 2018;20(6):53-61. [In Persian] doi: 10.18869/acadpub.jbums.20.6.53 85. Gomes VM, Carvalho AO, Da Cunha M, Keller MN, Bloch C Jr, Deolindo P, et al. Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon 2005;45(7):817-27. doi: 10.1016/j.toxicon.2004.12.011 86. Yang R, Zhang Z, Pei X, Han X, Wang J, Wang L, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chemistry 2008;113(2):464–70. doi: 10.1016/j.foodchem.2008.07.086 87. Gill HS, Doull F, Rutherfurd KJ, Cross ML. Immunoregulatory peptides in bovine milk. Br J Nutr. 2000;84 Suppl 1:S111-7. doi: 10.1017/s0007114500002336 88. Jaberi Ansari F, Jalili H, Bizukojc M, Amrane A. Optimization of date syrup as a novel medium for lovastatin production by Aspergillus terreus ATCC 20542 and analyzing assimilation kinetic of carbohydrates. Annals of microbiology. 2018;68(6):351-63. doi: 10.1007/s13213-018-1342-2) 89. Jaberi Ansari F, Jalili H, Azizi M. A Study of the Factors Effective in Morphogenesis of Aspergillus terreus in order to Increase the Production of Lovastatin. J Babol Univ Med Sci 2017;19(9):54-61. doi: 10.22088/jbums.19.9.54 90. Jaberi Ansari F, Jafari Mansoorian H, Jalili H, Azizi M. A review of the effective factors for lovastatin production by Aspergillus terreus ATCC 20542 in liquid submerged fermentation. Journal of Babol University of Medical Sciences 2016;18(12):40-8. doi: 10.22088/jbums.18.12.40 91. Jaberi Ansari F, Hajihassan Z, Jalili H. Recombinant β-NGF production in E.coli using date syrup. Biotechnology Tarbiat Modares University 2015;6(2):60-70. 92. Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and caco-2 cells. J Nutr 1999;129(9):1725-30. doi: 10.1093/jn/129.9.1725 93. Aoyama T, Fukui K, Takamatsu K, Hashimoto Y, Yamamoto T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition 2000;16(5):349-54. doi: 10.1016/s0899-9007(00)00230-6 94. Lovati MR, Manzoni C, Gianazza E, Sirtori CR. Soybean Protein Products as Regulators of Liver Low-Density Lipoprotein Receptors I. Identification of Active â-Conglycinin Subunits. J Agric Food Chem 1998;46:2474-80. doi.org/10.1021/jf980099h 95. Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, et al. Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem Biophys Res Commun 2001;281(1):11-7. doi: 10.1006/bbrc.2001.4298 96. López-Fandiño R, Otte J, Camp JV. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal 2006;16(11):1277–93. doi.org/10.1016/j.idairyj.2006.06.004 97. Suetsuna K, Maekawa K, Chen JR. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 2004;15(5):267-72. doi: 10.1016/j.jnutbio.2003.11.004 98. Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 2008;47(4):171-82. doi: 10.1007/s00394-008-0710-2. 99. Pihlanto A. Antioxidative peptides derived from milk proteins. International Dairy Journal 2006;16(11): 1306–14. doi.org/10.1016/j.idairyj.2006.06.005 100. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005;53(6):1841-56. doi: 10.1021/jf030723c 101. Hernández-Ledesma B, Hsieh CC, de Lumen BO. Lunasin, a novel seed peptide for cancer prevention. Peptides 2009;30(2):426-30. doi: 10.1016/j.peptides.2008.11.002. 102. Sedighi M, Jalili H, Siadat SO, Amrane A. Potential health effects of enzymatic protein hydrolysates from Chlorella vulgaris. Applied Food Biotechnology 2016;3:160-9. doi: https://doi.org/10.22037/afb.v3i3.11306 103. Froehlich JC. Opioid peptides. Alcohol Health Res World 1997;21(2):132-6. 104. Phelan M, Aherne A, FitzGerald RJ, O’Brien NM. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal 2009;19(11):643–54. doi: 10.1016/j.idairyj.2009.06.001 105. FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk proteins. J Nutr 2004;134(4):980S-8S. doi: 10.1093/jn/134.4.980S 106. Fuglsang A, Nilsson D, Nyborg NC. Characterization of new milk-derived inhibitors of angiotensin converting enzyme in vitro and in vivo. J Enzyme Inhib Med Chem 2003;18(5):407-12. doi: 10.1080/1475636031000138723