
Introduction
The history of microbial resistance to antibiotics dates back 
to the 1940s. Since then, the attention of international and 
national authorities has been directed to overcoming or 
reducing the incidence of microbial resistance. The more 
antibiotics are used to treat infections, the more likely 
microbial resistance will occur. Even antibacterial drugs 
with a new mechanism of action are affected by antibiotic 
resistance (1,2). Bacterial sensitivity to antimicrobial 
agents is reduced through mechanisms such as the 
inactivation of the drug, changing the target site, changing 
the metabolic pathway, and reducing the accumulation of 
the drug in the target site due to the reduction of drug 
penetration. The decreased drug penetration is probably 
due to the ability of some microorganisms to grow in the 
form of biofilm or because of the increased expression 
of efflux pumps that pump the drug out of the cell (3-5). 

Researchers are currently studying and designing new 
antimicrobial agents that suppress antibiotic resistance. 
As a result, designing effective and safe antimicrobial 
agents with broad antimicrobial effects is essential for 
treating antimicrobial infections.

Encapsulation of antimicrobial agents in nanocarrier 
systems is one of the alternatives and new approaches 
that increase the antimicrobial effect and at the same time 
reduce side effects (6,7). Recently, niosomes have been 
widely used to increase selective delivery and improve 
the therapeutic effectiveness of antimicrobial agents 
(8,9). Niosomes are double-layered structures consisting 
of non-ionic surfactants and cholesterol, which, due to 
their biocompatibility, are a suitable option for retaining 
large doses of drugs, especially antibiotics with very 
low toxicity on normal cells (10,11). Niosomes also 
have unique properties such as non-immunogenicity, 
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and slow release for more than 72 hours. 
Conclusion: A significant increase in antibacterial activity was observed when using curcumin in combination with metal 
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biodegradability, easy storage, and safety. They can also 
be used for encapsulating hydrophilic and hydrophobic 
drugs (12-14). Recently, niosomes have found wide 
applications in increasing the antimicrobial effects of 
antibiotic agents.

Metal nanoparticles have attracted a lot of attention 
due to their unique and unusual physical and chemical 
properties that are completely different from their 
metallic properties. These unique physical and chemical 
properties of nanoparticles are due to their small size 
and high surface-to-volume ratio (15-17). Copper (Cu) 
compounds have a high potential for application as 
antibacterial agents due to their relatively low cost and 
high environmental safety. It has been shown that copper 
nanoparticles can have antimicrobial properties against 
a wide range of microorganisms, including pathogenic 
bacteria (18). Another widely used metal nanoparticle is 
the silver nanoparticle. These nanoparticles have different 
properties including optical, electrical, biological, and 
thermal properties and high electrical conductivity. Due 
to their unique characteristics, these nanoparticles have 
various applications as antibacterial agents in industrial, 
household, and health products (19).

Curcumin is another new antimicrobial agent that has 
recently received a lot of attention in clinical research. 
This compound induces its antimicrobial activity by 
damaging the bacterial cell membrane, and as a result, it is 
active against a large number of gram-positive and gram-
negative bacteria (20). This characteristic is probably 
attributed to the hydrophobic nature of curcumin (Log 
P 2.56 to 3.29) (21). Interestingly, curcumin has a strong 
synergistic effect with other antimicrobial agents (22).

The antibacterial effect of various compounds in 
the form of nanoniosomes alone or together with 
metal nanocomposites has already been investigated in 
several studies (9,11). In this study, the simultaneous 
combination of curcumin and metal nanoparticles (silver 
and copper) is used in free and niosomal forms to increase 
the antimicrobial effect and reduce antibiotic resistance. 
Accordingly, this study aims to prepare niosomes that 
are encapsulated with Cur, Cur-AgNPs, and Cur-CuNPs. 
After investigating the physicochemical properties of 
nanoparticles, the antibacterial effects of these niosomal 
nanocarriers are compared to the free form of drugs for 
the first time on gram-positive Staphylococcus aureus 
and gram-negative Pseudomonas aeruginosa.

Materials and Methods
The materials used in this study including cholesterol, 
Span 80, methanol, chloroform, dimethyl sulfoxide 
(DMSO), tetrahydrofuran (THF), Mueller Hinton Broth 
(MHB), and Mueller-Hinton Agar (MHA) were purchased 
from Merck (Germany). Dialysis membranes (molecular 
weight 12 000 Da), sodium borohydride (NaBH4), and 
silver nitrate (AgNO3) were purchased from Sigma-

Aldrich (Germany). Copper sulfate pentahydrate (CuSO4 
5H2O), starch (C6H10O5)n, ascorbic acid (C6H8O6), 
and sodium hydroxide NaOH were purchased from 
Sigma Aldrich. Double distilled water was used in all 
experiments. Staphylococcus aureus ATCC6538 and 
Pseudomonas aeruginosa ATCC15442 were obtained 
from the microbial bank of the Pasteur Institute of Iran.

To prepare AgNPs and CuNPs, 100 mL of 2 mM AgNO3 
was mixed with 200 μL of 1 M NaOH at 400 g/min for 
5 minutes. Then, 33 mL of chitosan dissolved in acetic 
acid (0.5%) was added. Finally, the solution was exposed 
to ultraviolet (UV) radiation for 20 minutes with an 
intensity of 300 mJ/(cm2). Silver nanoparticles (AgNPs) 
were diluted with double distilled water (23).

Copper nanoparticles (CuNPs) were synthesized 
through a chemical reduction process using copper (II) 
sulfate pentahydrate as a precursor salt and starch as a 
coating agent. The preparation process began by adding 
0.1 M copper (II) sulfate pentahydrate solution to 120 mL 
of starch (1.2%) with vigorous stirring for 30 minutes. In 
the second step, 50 mL of 0.2 mM ascorbic acid solution 
was added to the synthesis solution. Subsequently, 30 mL 
of 1 mM sodium hydroxide solution was slowly added to 
the prepared solution with stirring and heating at 80°C 
for 2 hours. The color of the solution turned yellow. After 
the reaction was completed, the solution was removed 
from the heat and kept at room temperature for 24 hours. 
Then, the supernatant was carefully discarded. According 
to the instructions provided in a similar study (24), the 
sediments were separated from the solution by filtration 
and washed three times with deionized water and ethanol 
to remove the starch attached to the nanoparticles. The 
precipitates obtained were dried at room temperature. 
After drying, the nanoparticles were stored in a glass 
container for further experiments (24).

To prepare Cur-Ag and Cur-Cu nanoparticle-containing 
niosomes, the niosomes were prepared using the thin layer 
hydration method (25). Briefly, Span 80, cholesterol (1:1 
molar ratio), and curcumin (1 mg/mL concentration) were 
dissolved in an organic solvent (chloroform: methanol 2:1 
volume ratio). Then, the solvents were evaporated using 
a vacuum evaporator (Heidolph Instruments, Germany) 
and formed a thin lipid film in 60°C at 120 rpm. The thin 
layer was hydrated with 10 mL of phosphate-buffered 
saline (PBS pH 7.2). It should be noted that for curcumin-
silver nanoparticle and curcumin-copper nanoparticle 
niosomal formulations, hydration was performed with 
AgNPs and CuNPs at a concentration of 200 μg/mL. 
Afterward, the niosomal formulations were broken by 
a sonicator (Hielscher Up50H Ultrasonic Processor, 
Germany) for 7 minutes. Finally, the formulations were 
stored at 4°C for further experiments.
The different groups used for the next steps are as follows:
• Empty niosome (B-Nio)
• Free curcumin (F-Cur)
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• Curcumin-loaded niosome (Cur-Nio)
• Curcumin-free silver nanoparticles (F-Cur-AgNPs)
• Niosomes loaded with curcumin-silver nanoparticles 

(Cur-AgNPs-Nio)
• Curcumin-free copper nanoparticles (F-Cur-CuNPs)
• Niosomes loaded with curcumin-copper 

nanoparticles (Cur-CuNPs-Nio)
To determine the characteristics of niosomal 

formulations, particle size and dispersion index 
(PDI) were first measured using a ZetaSizer (Malvern 
Instrument, UK) via dynamic light scattering (DLS) at 
room temperature with 3 replications. 

Besides, to check the size and morphology of the 
formulations, the surface morphology of blank (drug-
free) niosomes was assessed using a scanning electron 
microscope (SEM) at a voltage of 200 kV.

To calculate the entrapment efficiency (EE), the Cur, Cur-
AgNPs-Nio, and Cur-CuNPs-Nio containing formulations 
were centrifuged using an Amicon Ultra-15 MWCO 30 
kDa ultrafilter membrane in a centrifuge (Eppendorf® 
580R, Germany) at a speed of 400 g for 20 minutes. The 
free drugs moved through the filter membrane. Then, the 
Cur, AgNP, and free CuNP concentrations were measured 
using UV-Vis spectroscopy at wavelengths of 420, 415, 
and 480 nm, respectively (17,26). The percentage of EE 
was calculated with the following equation:

(EE) = (A-B)/A × 100

where A is the amount of primary drug used to prepare 
niosome and B is the amount of free drug passed through 
the filter membrane.

The drug release rate from niosomes nanoparticles 
was measured through dialysis as one of the main 
methods used to evaluate the behavior of drug release 
from niosomes in vitro (27). Drug release in vitro from 
niosome formulations was measured with a dialysis bag 
(MWCO12000 Da) in a release medium containing PBS 
(0.5% W/VSDS) to mimic the physiological environment 
at 37°C for 72 hours. Two milliliters free and noisomal 
drugs were separately transferred to the dialysis 
membrane and drug release was evaluated in 50 mL PBS 
with continuous stirring. At predetermined intervals 
(1, 2, 4, 8, 24, 48, and 72 hours), one milliliter of release 
medium was collected and immediately replaced with an 
equal volume of fresh PBS to determine the drug release 
rate. Finally, the released drugs were measured by UV-Vis 
spectrometer at wavelengths of 420, 415, and 480 nm for 

Cur, Cur-AgNPs, and Cur-CuNPs, respectively.
To measure the rate of bacterial lethality by niosomes 

formulations over time, the antibacterial activity of 
niosomes enclosed with drugs (including curcumin, 
AgNPs, and CuNPs) was measured for 72 hours using the 
96-wall plate procedure on the Staphylococcus aureus and 
Pseudomonas aeruginosa strains. Curcumin-free forms 
and curcumin alone, Cur-AgNPs, and Cur-CuNPs were 
prepared with a concentration of 100 μg/mL. Then, 100 
μL of the tested sample was added to each well of the 
96-well plate, including (i) free curcumin, (ii) niosomal 
curcumin, (iii) free Cur-AgNPs, (iv) curcumin-niosome 
silver nanoparticles, (v) Cur-CuNPs. free, (vi) curcumin-
niosome copper nanoparticles, and (vii) niosome blank. 
Then, 100 μL of diluted bacterial suspension to a final 
concentration of 105 CFU/mL was added to each well. 
Afterward, the 96-well plate was incubated at 37°C and 
the optical absorbance (OD) at 600 nm was measured at 
specific time intervals (0, 2, 4, 6, 24, 48, and 72 hours) 
using a microplate reader (EPOCH, Japan) (28). The 
growth curve of Staphylococcus aureus and Pseudomonas 
aeruginosa was considered a positive control.

GraphPad Prism 5.0 software was used for the statistical 
analysis of data through one-way analysis of variance 
(ANOVA). Each value was expressed as mean ± SD 
and a P value less than 0.05 was considered statistically 
significant.

Results
To prepare and determine their properties, AgNPs and 
CuNPs were successfully synthesized by the chemical 
reduction method. The niosome formulations containing 
Cur-AgNPs and Cur-CuNPs had optimal particle sizes 
of 188.10 and 197.53 nm, respectively, and particle 
dispersion indices of 0.170 and 0.117 (Table 1). As can be 
seen in Table 1, the particle dispersion index of niosomal 
nanoparticles is less than 0.3, indicating the homogeneity 
of the particle size. The analysis of the EE of curcumin and 
AgNPs and CuNPs nanoparticles showed that curcumin 
was loaded with high efficiency (≥ 90%) in niosomal 
nanoparticles, while the EE of AgNPs and CuNPs was 
12.24 and 20.45, respectively.

SEM images of the blank niosome formulation in 
Figure 1 used to analyze the size and morphology of 
niosome formulation indicated almost spherical niosome 
vesicles with a smooth surface in the range of 174-197 nm 
particle size, confirming that the parameters selected for 
preparing niosomes significantly affected the morphology 

Table 1. The particle size, dispersion index, and entrapment efficiency of different niosomal formulations: Cur-Nio, Cur-AgNPs-Nio, and Cur-CuNPs-Nio

Formulation Size (mm) Particle dispersion index Curcumin entrapment efficiency (%) AgNP/CuNP entrapment efficiency (%)

Cur-Nio 174.30±5.57 0.182±0.012 95.59±1.23

Cur-AgNPs-Nio 188.19±10.21 0.170±0.005 94.57±0.88 12.24±1.55 

Cur-CuNPs-Nio 197.53±6.42 0.117±0.011 0.117±1.22 20.45±2.31 

The data were replicated 3 times and each data is displayed as mean ± standard deviation (SD).
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of nanoparticles.
The release of curcumin and metal nanoparticles from 

the niosome formulations was analyzed at 37°C for 72 
hours. In this study, the dialysis membrane containing 
the treatment groups was immersed in the buffer solution 
and sampling was performed in 1 mL of the solution 
at the predetermined intervals. The removed volume 
was replaced with the same amount of buffer solution. 
Figure 2 shows the release of curcumin alone and its 
simultaneous combination with AgNPs and CuNPs from 
niosomal formulations. As can be seen, up to 8 hours 
from the start of the release, the drug is released fast 
followed by a slow and controlled release up to 72 hours, 

indicating the release of the antimicrobial agents through 
the two lipid layers.

In this study, the antibacterial activity of the free and 
niosomal forms of curcumin and the combination of 
Cur-AgNPs and Cur-CuNPs was evaluated as a function 
of time on S. aureus and P. aeruginosa bacteria (Figure 3). 
The results indicated that the forms encapsulated with 
niosomes had more lethality due to reduced optical 
density (OD) absorbance on the target bacteria (P < 0.05). 
The OD absorbance was greater in the bacteria exposed 
to CuNP-containing niosomes than in those exposed 
to AgNP-containing niosomes. Indeed, the higher EE 
of CuNPs inside niosomes (20%) compared to AgNPs 
(12%) can be one of the reasons for the higher lethality of 
niosomes loaded with Cur-CuNPs. Moreover, as displayed 
in Figure 3, all three niosomal carriers containing Cur, 
Cur-AgNPs, and Cur-CuNPs have significantly higher 
EE compared to the control group on gram-negative P. 
aeruginosa bacteria (P < 0.05).

Discussion 
Niosomes are vesicles based on nonionic surfactants 
that are usually used to release drugs, genes, proteins, 
etc. The structure of a niosome is almost similar to a 
liposome, but due to the difference in its raw materials, it 
has many advantages such as higher stability, lower cost, 
and more biocompatibility than liposome. In general, 
drug release from niosomal nanoparticles has two phases: Figure 1. The SEM image of the blank niosomal formulation. 

Figure 2. Release of curcumin and metal nanoparticles from niosomal formulations: (a) release of free curcumin and niosome, (b) release of curcumin and silver 
nanoparticles and (c) release of curcumin and copper nanoparticles from niosome.
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The rapid release in the early hours followed by slow and 
controlled release. The rapid release may be due to the 
release of the drug from the surface of niosomes while 
the slower phase is mainly induced due to the diffusion 
of the drug through two lipid layers, which indicates 
the high stability of the encapsulated drug (29,30,31). 
The release rate of curcumin alone from the niosome 
nanostructure (Figure 2a) was similar to the release of 
curcumin from niosome containing Cur-AgNP and 
Cur-CuNP-containing niosomes. However, AgNPs and 
CuNPs had a faster release (Figures 2b and 2c), so that 
after 72 hours, about 80% of these nanoparticles were 
released from the niosome membrane, which is probably 
due to the partial separation of two adjacent layers and 
the increased diffusion in the samples loaded with AgNPs 
and CuNPs (32).

Curcumin is known as a natural antimicrobial 
compound and has effective biological and medicinal 
activity. To overcome the hydrophobicity of curcumin, 
Liao et alused the simultaneous combination of tannic 
acid and metal to coat curcumin nanoparticles (CurNPs) 
and investigate their antibacterial effect. The introduction 
of metal ions increased the bacterial inhibition efficiency 
compared to curcumin and metal ions alone. The results 
showed that the minimum inhibitory concentration 
of the CuNP-containing complex was 7.5 times lower 
than that of curcumin alone on S. aureus (33). Loo et al 
also used the simultaneous combination of AgNPs and 
CuNPs to increase the anti-biofilm activity on S. aureus 
and P. aeruginosa. The results of the SEM and confocal 
laser scanning microscope showed that the simultaneous 
treatment of AgNPs and CuNPs is the most powerful 
method to destroy the biofilm of the mentioned bacteria 
compared to each of these factors alone (34). In another 
study, Huang et al investigated the effect of silver-
decorated polymeric micelles combined with curcumin 
on enhanced antibacterial activity of S. aureus and P. 
aeruginosa and observed that due to the cooperative 

antibacterial effects of silver nanoparticles and curcumin, 
the lethal effect of this polymer structure increased 
compared to the polymer micelles containing silver 
nanoparticles and micelles encapsulated with curcumin 
alone (35).

Different patterns of antibacterial activity related to 
free and encapsulated drugs with niosomes observed in 
the present study were consistent with previous reports 
(36-38). In these studies, growth inhibition was observed 
as an increase in the lag phase, a decrease in the growth 
rate, or a decrease in the OD of the bacterial strains, and 
the encapsulated drugs were gradually released over time, 
leading to the “slower and longer” pattern of antibacterial 
activity. This effect may be because vesicles, apart from 
interacting with the outer bacterial membrane, can 
release a large amount of drug near the surface of the 
bacteria and cause a concentration gradient of the drug 
to facilitate its entry into the cell (39). Interestingly, the 
inhibitory effect of the simultaneous combination of 
metal nanoparticles with curcumin in the niosomal 
formulation was more than curcumin encapsulated in the 
niosome alone, indicating that the simultaneous use of 
metal nanoparticles and curcumin has a synergistic effect 
in inhibiting bacterial growth.

Previous studies have shown that the mechanism of 
antibacterial activity of curcumin involves disrupting the 
GTPase activity of FtsZ protofilaments, which play an 
important role in bacterial cytokinesis. This disturbance 
is fatal for bacteria and by inhibiting the FtsZ community 
in the Z ring, it prevents the proliferation of bacterial 
cells. However, the membrane structure of bacteria is not 
disturbed by curcumin in any way (40). Another study 
showed that curcumin inhibits the surface protein Sortase 
A and prevents cell adhesion to fibronectin. Indeed, the 
mechanism through which curcumin nanoparticles exert 
their antibacterial properties is that they are anchored to 
the bacterial cell wall, break it, then penetrate the cell and 
disrupt the structure of the internal components of the 

Figure 3. Anti-bacterial activity of free drugs and niosomes on (a) S. aureus and (b) P. aeruginosa bacteria by measuring the optical density (OD) absorbance as 
a function of time. As can be seen, the drug niosomal forms (Cur, Cur-AgNPs, and Cur-CuNPs) showed more anti-bacterial activity on the studied bacteria over 
time (P < 0.05).



Abolhassani Targhiet al

Health and Development Journal. Volume 11, Number 1, 20226

bacteria (41). 
The exact mechanism of action of AgNPs on bacteria 

is still unknown. However, some researchers have 
suggested that the action of AgNPs on bacteria may be 
due to their ability to penetrate the cell (42), formation 
of free radicals (43,44), inactivation of proteins in the cell 
by silver ions (45), and production of reactive oxygen 
species (46). In addition, other factors such as AgNP 
concentration, bacterial type (47), shape (48,49), size 
(50), and combination with different antibiotics (51,52) 
may also be effective on the bactericidal performance 
of nanoparticles. CuNPs also have different effects on 
the killing of bacteria. The copper ions released by the 
nanoparticles are probably attached to the negatively 
charged bacterial cell wall and by destroying the cell wall, 
they lead to cellular death. Furthermore, copper ions 
inside bacterial cells are attached to deoxyribonucleic 
acid molecules and interfere with the bond inside and 
between nucleic acid strands, and as a result, an irregular 
spiral structure is formed. Furthermore, the absorption 
of copper ions by bacterial cells also disrupts important 
biochemical processes (53,54).

This study showed all three niosomal carriers containing 
curcumin, Cur-AgNPs, and Cur-CuNPs were more 
effective against gram-negative P. aeruginosa possibly due 
to the difference in the cell walls of gram-negative and 
gram-positive bacteria. Gram-positive bacteria have a 
thick cell wall (20-80 nm) as the outer shell of the cell, 
while gram-negative bacteria have a relatively thin layer 
(less than 10 nm) of the cell wall and an outer membrane 
with several pores and appendages. These differences in 
the cell envelope give different characteristics to the cell, 
especially when reacting to external stresses, including 
exposure to antimicrobial agents (29).

Conclusion 
The simultaneous use of AgNPs and CuNPs along with 
curcumin in niosomal formulations can be an effective 
solution to inhibit the growth of bacteria, which is caused 
by the synergistic effect of both compounds together 
compared to each of the compounds alone. The death 
rate of bacteria that were exposed to CuNP-containing 
niosomes was higher than that of bacteria that were 
exposed to AgNP-containing niosomes. In fact, the 
higher EE of CuNPs inside the niosomes compared to 
NgNPs can be one of the reasons for the higher lethality 
of niosomes loaded with Cur-CuNPs. Besides, the use of 
niosomal formulation causes more and longer inhibition 
of bacterial growth. This formulation can be used directly 
as a solution to prevent the spread of bacterial infections 
or as a coating on medical equipment to achieve a long-
term and continuous antibacterial effect.
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