Evaluation of the Efficiency of Double Aluminum-Magnesium Layered Nano-Hydroxide in Removal of Pharmaceuticals from Aquatic Solutions and Determination of Optimal Adsorption

Authors

Abstract

Background: Antibiotics and their metabolites are known as dangerous non-degradable substances that potentially remain after the wastewater treatment process. Therefore, it is necessary to remove these compounds from aqueous solutions. This study aimed to use layered double nano-hydroxides to remove carbamazepine, cephalexin, and ciprofloxacin.
 
Methods: In this experimental study the characteristics of double aluminum-magnesium layered nano-hydroxide were investigated by SEM, FTIR, XRD, and DLS. In order to determine the removal efficacy of this adsorbent; the effects of pH, adsorbent dose, contact time and initial concentration of antibiotics was investigated and the isotherms and kinetics of absorption were determined.
 
Results: According to the SEM and TEM analysis, the synthesized adsorbent had a hexagonal shape and its size ranged from 200 to 1000 nm. The analysis of XRD and FTIR showed that the adsorbent is a layered double hydroxide. The highest removal rate of antibiotics was observed at the contact time of 120 min, pH of 9, the adsorbent dose of 8 g/L and concentration of 30 mg/L for all three types of antibiotics which was 94%, 91% and 97% for carbamazepine, cefalexin, and ciprofloxacin respectively.  The study of isotherm and kinetics showed that absorption data were more consistent with the Freundlich model and pseudo-second-order kinetics.
 
Conclusion: The results of this study showed that layered double hydroxide that was synthesized by urea hydrolysis, had high efficacy in the treatment of carbamazepine, cephalexin, and ciprofloxacin.

Keywords


1. Baran W, Adamek E, Jajko M, Sobczak A. Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere 2018;194:381-9. doi: 10.1016/j.chemosphere.2017.11.165. 2. Ahmed MB, Zhou JL, Ngo HH, Guo W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci Total Environ 2015;532:112-26. doi: 10.1016/j.scitotenv.2015.05.130. 3. Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A. Multiclass screening method based on solvent extraction and liquid chromatography-tandem mass spectrometry for the determination of antimicrobials and mycotoxins in egg. J Chromatogr A 2012;1268:84-90. doi: 10.1016/j.chroma.2012.10.040. 4. Rahmani A, Shabanlo A, Majidi S, Tarlani-Azar M, Mehralipour J. Efficiency of Ciprofloxacin (CIP) Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS) Process. Journal of Water and Wastewater 2016; 27(1): 40-8. Persian 5. Liu W, Xie H, Zhang J, Zhang C. Sorption removal of cephalexin by HNO3 and H2O2 oxidized activated carbons. Science China Chemistry. 2012;55(9):1959-67. doi: 10.1007/s11426-011-4488-3 6. Liu H, Liu W, Zhang J, Zhang C, Ren L, Li Y. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J Hazard Mater 2011;185(2-3):1528-35. doi: 10.1016/j.jhazmat.2010.10.081. 7. Arslan-Alaton I, Caglayan AE. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol Environ Saf 2006;63(1):131-40. doi:10.1016/j.ecoenv.2005.02.014 8. Hai FI, Li X, Price WE, Nghiem LD. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresource Technology 2011;102(22):10386-90. doi.org/10.1016/j.biortech.2011.09.019 9. Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrason Sonochem 2016;29:156-62. doi: 10.1016/j.ultsonch.2015.09.008. 10. Bui TX, Choi H. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica. Chemosphere 2010;80(7):681-6. doi.org/10.1016/j.chemosphere.2010.05.046 11. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, et al. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research 2005;39(14):3139-52. doi.org/10.1016/j.watres.2005.05.031 12. De Witte B, Dewulf J, Demeestere K, Van Langenhove H. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J Hazard Mater 2009;161(2-3):701-8. doi: 10.1016/j.jhazmat.2008.04.021. 13. Sun SP, Guo HQ, Ke Q, Sun JH, Shi SH, Zhang ML, et al. Degradation of antibiotic ciprofloxacin hydrochloride by photo-fenton oxidation process. Environmental Engineering Science 2009;26(4):753-9. doi: 10.1089/ees.2008.0076 14. Giri AS, Golder AK. Ciprofloxacin degradation from aqueous solution by Fenton oxidation: reaction kinetics and degradation mechanisms. RSC Adv 2014;4(13):6738-45. doi: 10.1039/C3RA45709E 15. Sanchez-Polo M, Lopez-Penalver J, Prados-Joya G, Ferro-Garcia MA, Rivera-Utrilla J. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res 2009;43(16):4028-36. doi: 10.1016/j.watres.2009.05.033. 16. Ajoudanian N, Nezamzadeh-Ejhieh A. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Materials Science in Semiconductor Processing 2015;36:162-9. doi.org/10.1016/j.mssp.2015.03.042 17. Nielsen L, Zhang P, Bandosz TJ. Adsorption of carbamazepine on sludge/fish waste derived adsorbents: Effect of surface chemistry and texture. Chemical Engineering Journal 2015;267:170-81. doi.org/10.1016/j.cej.2014.12.113 18. Wu H, Feng Q, Yang H, Alam E, Gao B, Gu D. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;517:63-71. doi.org/10.1016/j.colsurfa.2017.01.005 19. Álvarez-Torrellas S, Ribeiro RS, Gomes HT, Ovejero G, García J. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chemical Engineering Journal 2016;296:277-88. doi.org/10.1016/j.cej.2016.03.112 20. Carrales-Alvarado DH, Ocampo-Perez R, Leyva-Ramos R, Rivera-Utrilla J. Removal of the antibiotic metronidazole by adsorption on various carbon materials from aqueous phase. J Colloid Interface Sci 2014;436:276-85. doi: 10.1016/j.jcis.2014.08.023. 21. Yu F, Li Y, Han S, Ma J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere. 2016;153:365-85. doi.org/10.1016/j.chemosphere.2016.03.083 22. Lerman I, Chen Y, Xing B, Chefetz B. Adsorption of carbamazepine by carbon nanotubes: effects of DOM introduction and competition with phenanthrene and bisphenol A. Environ Pollut 2013;182:169-76. doi: 10.1016/j.envpol.2013.07.010. 23. Jiang WT, Chang PH, Wang YS, Tsai Y, Jean JS, Li Z, et al. Removal of ciprofloxacin from water by birnessite. J Hazard Mater 2013;250-251:362-9. doi: 10.1016/j.jhazmat.2013.02.015. 24. Chen H, Gao B, Li H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater 2015;282:201-7. doi: 10.1016/j.jhazmat.2014.03.063. 25. Li Z, Hong H, Liao L, Ackley CJ, Schulz LA, MacDonald RA, et al. A mechanistic study of ciprofloxacin removal by kaolinite. Colloids Surf B Biointerfaces 2011;88(1):339-44. doi: 10.1016/j.colsurfb.2011.07.011. 26. Miao M-S, Liu Q, Shu L, Wang Z, Liu YZ, Kong Q. Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses. Process Safety and Environmental Protection 2016;104:481-9. doi.org/10.1016/j.psep.2016.03.017 27. Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, Zarrabi M. Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. Journal of Molecular Liquids 2015;211:431-41. doi.org/10.1016/j.molliq.2015.06.067 28. Lv L, He J, Wei M, Evans DG, Duan X. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides. J Hazard Mater 2006;133(1-3):119-28. doi: 10.1016/j.jhazmat.2005.10.012 29. El Gaini L, Lakraimi M, Sebbar E, Meghea A, Bakasse M. Removal of indigo carmine dye from water to Mg-Al-CO(3)-calcined layered double hydroxides. J Hazard Mater 2009;161(2-3):627-32. doi: 10.1016/j.jhazmat.2008.04.089. 30. Sepehr MN, Al-Musawi TJ, Ghahramani E, Kazemian H, Zarrabi M. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arabian Journal of Chemistry 2017;10(5):611-23. doi.org/10.1016/j.arabjc.2016.07.003 31. Yu F, Sun S, Han S, Zheng J, Ma J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chemical Engineering Journal 2016;285:588-95. doi.org/10.1016/j.cej.2015.10.039 32. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical Engineering Journal 2013;217:119-28. doi.org/10.1016/j.cej.2012.11.069 33. Naghizadeh A, Kamranifar M, Yari AR, Mohammadi MJ. Equilibrium and kinetics study of reactive dyes removal from aqueous solutions by bentonite nanoparticles. Desalination and Water Treatment 2017;97:329-37. 34. Kamranifar M, Khodadadi M, Samiei V, Dehdashti B, Noori Sepehr M, Rafati L, et al. Comparison the removal of reactive red 195 dye using powder and ash of barberry stem as a low cost adsorbent from aqueous solutions: Isotherm and kinetic study. Journal of Molecular Liquids 2018;255:572-7. doi.org/10.1016/j.molliq.2018.01.188 35. Kamranifar M, Naghizadeh A. Montmorillonite Nanoparticles in removal of textile dyes from aqueous solutions: study of kinetics and thermodynamics. Iran J Chem & Chem Eng 2017;36(6):127-37. 36. Aksu Z, Tunç Ö. Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry 2005;40(2):831-47. doi.org/10.1016/j.procbio.2004.02.014 37. Noori Sepehr M, Mohebi S, Abdlollahi Vahed S, Zarrabi M. Removal of tetracycline from synthetic solution by natural LECA. Journal of Environmental Health Engineering 2014;1(4):301-11. Persian 38. Bajpai SK, Bajpai M, Rai N. Sorptive removal of ciprofloxacin hydrochloride from simulated wastewater using sawdust: Kinetic study and effect of pH. Water SA 2012;38(5):673-82. doi.org/10.4314/wsa.v38i5.4 39. Xu ZP, Jin Y, Liu S, Hao ZP, Lu GQ. Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. J Colloid Interface Sci 2008;326(2):522-9. doi: 10.1016/j.jcis.2008.06.062. 40. Zhang W, Ding Y, Boyd SA, Teppen BJ, Li H. Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere 2010;81(7):954-60. doi: 10.1016/j.chemosphere.2010.07.053. 41. Legnoverde MS, Simonetti S, Basaldella EI. Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: Theoretical and experimental study. Applied Surface Science 2014;300:37-42. doi.org/10.1016/j.apsusc.2014.01.198 42. Li H, Zhang D, Han X, Xing B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 2014;95:150-5. doi: 10.1016/j.chemosphere.2013.08.053. 43. Pouretedal HR, Sadegh N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. Journal of Water Process Engineering 2014;1:64-73. doi.org/10.1016/j.jwpe.2014.03.006 44. Bui TX, Choi H. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J Hazard Mater 2009;168(2-3):602-8. doi: 10.1016/j.jhazmat.2009.02.072.